
Implementation of the DKSS Algorithm
for Multiplication of Large Numbers

Christoph Lüders
Universität Bonn

Institut für Informatik
Bonn, Germany
chris@cfos.de

ABSTRACT
The Schönhage-Strassen algorithm (SSA) is the de-facto
standard for multiplication of large integers. For N -bit
numbers it has a time bound of O(N · logN · log logN).
De, Kurur, Saha and Saptharishi (DKSS) presented an
asymptotically faster algorithm with a better time bound
of N · logN · 2O(log∗ N). For this paper, a simplified DKSS
multiplication was implemented. Assuming a sensible up-
per limit on the input size, some required constants could
be precomputed. This allowed to simplify the algorithm to
save some complexity and run-time. Still, run-time is about
30 times larger than SSA, while memory requirements are
about 2.3 times higher than SSA. A possible crossover point
is estimated to be out of reach even if we utilized the whole
universe for computer memory.

Categories and Subject Descriptors
G.1.0 [Numerical Analysis]: General—Multiple precision
arithmetic; G.4 [Mathematical Software]: Algorithm de-
sign and analysis, Efficiency; I.1.2 [Symbolic And Alge-
braic Manipulation]: Algorithms—Algebraic algorithms,
Analysis of algorithms

General Terms
Algorithms, Performance.

Keywords
Integer multiplication, multiprecision arithmetic, fast
Fourier transform.

1. INTRODUCTION
Multiplication of integers is one of the most basic arith-

metic operations. The naive method to multiply two N -
bit integers requires O(N2) bit-operations. As numbers get
larger, soon this process becomes too slow and faster means
are desirable.
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In the 1960s methods were discovered (cf. [14], [20], [3])
that lowered the number of bit-operations successively until
in 1971 Schönhage and Strassen [19] presented their now well
known algorithm (abbreviated as SSA). If logN denotes the
logarithm to base 2, their algorithm has a time bound of

T (N) = O(N · logN · log logN). (1)

It uses a fast Fourier transform (FFT), a technique that
was already known by Gauss, but rediscovered in 1965 by
Cooley and Tukey [4].
SSA was the asymptotically fastest known method for

multiplication until in 2007 Fürer [9] found an even faster
way. Fürer’s algorithm inspired De, Kurur, Saha and Sap-
tharishi to their multiplication method [6] (see [7] for an ex-
panded text), here called DKSS multiplication (or DKSSA
for short). Both Fürer’s and DKSS’ algorithms require

T (N) = N · logN · 2O(log∗ N) (2)

bit-operations, where log∗ N is the number of times the log-
arithm function has to be applied to get a value ≤ 1.
However, Fürer conjectured that his method only be-

comes faster than SSA for “astronomically large numbers”
[9, sec. 7]. Fürer’s algorithm uses floating point operations,
in contrast to SSA and DKSSA, which both use integer oper-
ations. To obtain a fair comparison, I implemented DKSSA
and compared it to SSA.

The ability to multiply numbers with millions or billions of
digits is not only academically interesting, but bears practi-
cal relevance. Number theoretical tasks like specialized pri-
mality tests require fast multiplication of potentially very
large integers. Multiplication of dense polynomials with nu-
merical coefficients can be reduced to one huge integer mul-
tiplication through Kronecker-Schönhage substitution [18,
sec. 2]. Likewise, multiplication and factoring of multivari-
ate polynomials [10] and calculation of π or e to billions of
digits or computing billions of roots of Riemann’s zeta func-
tion are other fields that require fast multiplication of large
numbers [21, sec. 8.0]. Such calculations can be performed
nowadays with general purpose computer algebra systems.
Fast multiplication is an important building block of a

general library for arithmetic operations on large numbers
like GMP, the GNU Multiple Precision Arithmetic Library
[12] or MPIR, a popular GMP fork for Windows [11]. Many
of the more complex tasks — like inversion, division, square
root or greatest common divisor — revert back to multipli-
cation, cf. [10].

The method of Schönhage and Strassen (we use the up-
dated version from [18]) uses the ring Z/(2K + 1)Z, where



2 is a primitive 2K-th root of unity. It breaks numbers of
N bits into pieces of O(

√
N) bits, which are in turn multi-

plied, maybe using the algorithm recursively. It is cleverly
designed to take advantage of the binary nature of today’s
computers: multiplications by powers of 2 are particularly
simple and fast to perform and this permits a crucial speed-
up for the FFT. This is why it has not only held the crown of
the asymptotically fastest multiplication algorithm for over
35 years, but is also in widespread practical use today.

DKSS multiplication has a better asymptotic time bound,
but is more complicated. Its elaborate structure allows input
numbers to be broken into pieces only O(log2 N) bits small.
However, its arithmetic operations are more costly.

We are investigating here if or when an implementation of
DKSS multiplication becomes faster than one of Schönhage-
Strassen multiplication. An expanded account on the theory,
implementation and analysis can be found in [16].

1.1 Note on Asymptotics
We know from theory that DKSSA is asymptotically faster

than SSA. Unfortunately, that doesn’t tell us if a practical
implementation will be faster for the range of input lengths
it is used for.

Software that multiplies large numbers usually chooses the
fastest algorithm for a given input bit-length N . In our
case, the implementation was done with my own BIGNUM li-
brary [15] that features grade-school (or ordinary), Karat-
suba, Toom-Cook 3-way and Schönhage-Strassen multipli-
cation. Except for grade-school, all other methods are re-
cursive schemes, that means, they reduce the input to mul-
tiple smaller multiplications that in turn are handled by the
fastest algorithm for their length until, at the lowest level,
grade-school multiplication is used.

This requires to find the crossover points between differ-
ent algorithms, i.e. the bit-length N , where the more com-
plex, yet asymptotically faster algorithm becomes just as
fast as the simpler algorithm. Since these crossover points
depend on several factors (many of them implementation de-
tails or rooted in code optimization), they are usually found
by benchmarking, that is, measuring and comparing the run-
time of the different algorithms. Figure 2 lists their values
for BIGNUM and MPIR.

Since a practical implementation is limited by the hard-
ware it’s run on, this implies an upper limit on the bit-length
N . Our implementation runs on a 64-bit CPU, so the length
of input numbers is limited to 8 · 264/4 = 265 bits. This is
not a serious limitation. According to top500.org, even the
fastest supercomputers in 2015 are equipped with around
1 PB = 253 bits of memory.

This is only to show that for a practical application today
a limitation of N < 265 bits is not very limiting. As we
will see, the picture doesn’t change much even if we assume
N < 2128 bits. If Moore’s law holds, that limit will hardly
be exceeded within this century.

2. (SIMPLIFIED) DKSS ALGORITHM
DKSS multiplication as laid our in [7] uses the polynomial

quotient ring R = P[α]/(αm + 1). Since αm ≡ −1, α is a
primitive 2m-th root of unity and multiplications by powers
of α can be done as cyclic shifts (where coefficients only
change place and possibly their sign, but not their absolute
value; hence a cyclic shift can be done in time linear to the
number of coefficients). UnderlyingR is the ring P = Z/pcZ,

where p is a prime number and c is a constant. This “double
structure” can be exploited in the FFT and allows to break
down anN -bit input number into numbers of O(log2 N) bits.
In their paper, De, Kurur, Saha and Saptharishi describe

the algorithm without any assumptions about the hardware,
but as described in §1.1, we assume here that the length of
input numbers is limited to 265 bits.
DKSS go to great lengths to show that suitable primes p

can be found at run-time. To facilitate that, the modulus
pc with c > 1 is used and numbers are encoded as k-variate
polynomials, k > 1. Both c and k are constants that depend
on Linnik’s constant. Polynomials have a degree less than M
in each variable, i.e. they have Mk coefficients. To calculate
the modulus pc, Hensel lifting is used. All of this is done to
keep the time to find the prime p bounded, cf. [7, §4.2].
Instead, in our simplified DKSS, the needed constants (the

prime p and a generator ζ of F∗
p) can be precomputed, since

an upper limit of input numbers is known. Therefore, our
M is chosen as large as Mk in the original paper and our p
as large as pc in the original paper. There is no more need
for Hensel lifting. This allows us to simplify the algorithm
and to skip c and k from now on.
The computational cost can of course only be lower, since

we leave out some steps (no searching for prime p or genera-
tor ζ, no Hensel lifting, no recursion to reduce the number of
variables in multivariate polynomials). Between the genuine
DKSS and our simplified version, the number of coefficients
is chosen in the same way, whereas in the simplified case the
ring P is even a field.

2.1 Short Description
Let [a : b] denote the set {x ∈ Z | a ≤ x ≤ b}.
Furthermore, for a ring R, a primitive n-th root of unity

ω ∈ R is called principal, if and only if n is coprime to the
characteristic of R and

∑n−1
i=0 ωij = 0 for j ∈ [1 : n− 1].

To multiply two nonnegative integers a, b < 2N , N ∈
N to obtain their product c := ab < 22N , we convert the
numbers into polynomials over a ring R, use the fast Fourier
transform to transform their coefficients, then multiply the
sample values and transform backwards to gain the product
polynomial. From there, we can easily recover the resulting
integer product.
Define R := P[α]/(αm + 1) and P := Z/pZ. Polynomial

coefficients are in P and are henceforth called inner coeffi-
cients.
Input numbers a and b are encoded as polynomials a(x)

and b(x) ∈ R[x] with degree less than M (M will be defined
shortly). The coefficients are called outer coefficients.
We can multiply a and b as follows:

1. Choose integersm ≥ 2 andM ≥ m as powers of 2, such
that m ≈ logN and M ≈ N/ log2 N . 2M will be the
length of the FFTs, while m is the degree of elements
of R. For simplicity of notation, define µ := M/m.

2. Let u := ⌈2N/Mm⌉ denote the number of input bits
per inner coefficient. Find a prime p with 2M | p− 1,
i.e. p := h · 2M + 1 for some h ∈ N.
Furthermore, the condition

p ≥ 1

2
Mm22u (3)

must be met to ensure that the inner coefficients don’t
overflow.



3. From parametersM , m and p compute a principal 2M -
th root of unity ρ ∈ R with the additional property
ρµ = α:

A generator ζ of F∗
p has order p − 1 = h · 2M and is

a principal (p − 1)-th root of unity, making ω := ζh a
principal 2M -th root of unity.

Denote γ := ωµ, a principal 2m-th root of unity. Fur-
thermore, let i ∈ [1 : 2m− 1] be odd. Observe that γi

is a root of αm+1 = 0, since (γi)m = (γm)i = (−1)i =
−1. Now use Lagrange interpolation to find ρ(α) with
ρ(γi) = ωi for all i.

4. Encode a and b as polynomials a(x), b(x) ∈ R[x] with
degree less than M by breaking them into M blocks
with um/2 bits in each block. Each such block de-
scribes an outer coefficient. Furthermore, split each
outer coefficient block into m/2 blocks of u bits each,
where each block forms an inner coefficient in the
lower-degree half of a polynomial. Set the upper m/2
inner coefficients to zero. Finally, set the upper M
outer coefficients to zero.

5. Use root ρ to perform a length-2M fast Fourier trans-
form of a(x) and b(x) to obtain âi := a(ρi) ∈ R, like-

wise b̂i. Use the special structure of R to speed up the
FFT, see the next section.

6. Multiply pointwise âib̂i =: ĉi. Note that âi, b̂i ∈ R
are themselves polynomials. Reduce their multiplica-
tion to integer multiplication by Kronecker-Schönhage
substitution and multiply them recursively (with the
fastest algorithm for their length). See below for de-
tails.

7. Perform a backwards transform of length 2M to ob-
tain the product polynomial c(x) := a(x)b(x). This in-
cludes the usual reordering of the resulting coefficients
and dividing them by 2M .

8. Evaluate the inner polynomials of the product polyno-
mial c(x) at α = 2u and the outer polynomial c(x) at

x = 2um/2 to recover the integer result c = ab.

To multiply two elements ofR (which are themselves poly-
nomials), we use Kronecker-Schönhage substitution, cf. [18,
sec. 2] and [2, sec. 1.3 & 1.9]. This reduces polynomial multi-
plication to integer multiplication withm(2⌈log p⌉+logm) =
O(log2 N) bits. To do so, we use the fastest multiplication
for that length, possibly recursing into DKSSA.

After that we still have to perform both modulo opera-
tions: mod (αm + 1) on the product polynomial and mod p
on its coefficients.

2.2 Performing the FFT
A Cooley-Tukey FFT [4] works for any length that is a

power of 2. Here the length is 2M and it can be split as
2M = 2m · µ, with µ = M/m. The input vector can be
organized as a matrix with 2m rows of µ columns each.

The DKSS algorithm uses a radix-µ decimation in time
Cooley-Tukey FFT, cf. [8, sec. 4.1]. That is, it first does
µ FFTs of length 2m on the columns of the matrix, then
multiplies the results by twiddle factors (called bad multipli-
cations by DKSS) and finally performs 2m FFTs of length
µ on the rows of the matrix.

The length-2m column FFTs use α as root of unity and
since multiplications with powers of α can be performed as
cyclic shifts, they can be done in linear time.

Let’s see how this works in detail. The length-2M DFT of
a(x) with ρ as root of unity can be computed in three steps:

1. Perform inner DFTs.

Rewrite the input vector a as a matrix of 2m rows of µ
columns (called eℓ) and perform FFTs on the columns.

Let v ∈ [0 : 2m − 1] and define polynomials āv(x) ∈
R[x] with degree less than µ as

āv(x) := a(x) mod (xµ − αv). (4)

Denote āv,ℓ the ℓ-th coefficient of āv(x). Then it holds
that

āv,ℓ = eℓ(α
v).

So to find the ℓ-th coefficient of each āv(x) perform a
length-2m DFT of eℓ(y), using α as root of unity. Call
these the inner DFTs.

Perform multiplications by powers of α as cyclic shifts.
Since αm ≡ −1, coefficients of powers ≥ m wrap
around with changed sign.

2. Perform bad multiplications.

Let [0 : 2M − 1] ∋ i = 2m · f + v with f ∈ [0 : µ − 1]
and v ∈ [0 : 2m− 1]. Then it follows from (4) that

a(ρi) = a(ρ2m·f+v) = āv(ρ
2m·f+v). (5)

In order to efficiently compute āv(ρ
2m·f+v), define

ãv(x) := āv(x · ρv). (6)

Compute ãv(x) by computing its coefficients ãv,ℓ =
āv,ℓ · ρvℓ, with ℓ ∈ [0 : µ− 1].

3. Perform outer DFTs.

Now all that is left is to evaluate the ãv(x), v ∈ [0 :
2m − 1], at x = ρ2m·f , for f ∈ [0 : µ − 1]. The ãv(x)
are arranged in such a way that these evaluations are
nothing but length-µ DFTs of ãv(x) with ρ2m as root
of unity, performed on the rows of the matrix. Call
these the outer DFTs.

If M ≥ m, this is done by a recursive call to the
FFT routine. According to (5) and (6) it computes
ãv(ρ

2m·f ) = āv(ρ
2m·f+v) = a(ρ2m·f+v) = a(ρi).

If called recursively, M < m might hold. Then, just
computing an inner DFT with αm/M as (m/M)-th root
of unity is sufficient.

The source code of the whole FFT can be found as
dkss_fft() in BIGNUM.



3. IMPLEMENTATION

3.1 Parameter Selection
There is some freedom on how exactly to select parameters

M , m, u and p. It follows from (3) that

p ≥ 1

2
Mm22u ≈ 1

2
N5/ logN. (7)

Both allocated memory and cost of division (for modular
reductions) depend on the length of p or, more precisely, on
its length in processor words. But the larger the value of p
(which is the modulus of P), the more bits we can encode
in each coefficient. This is turn can lead to fewer coefficients
and thus maybe to a shorter FFT length, which is desirable.

So we select a value for p that satisfies condition (7), but
makes the most of the memory it occupies. That is, log p
should be slightly less than a multiple of the processor word
size in bits. Benchmarking showed that this leads to faster
run-time than using (7) without rounding up, see [16, fig. 19].

The prime p is selected from a list of precomputed primes.
I precomputed suitable primes for bit-lengths from 2 to 1704.
According to (7) this allows DKSSA up to a bit-length of
N = 2342 bits. Since the implementation is running on a
64-bit machine, a shorter table would have done. And since
we’re rounding the length of p to multiples of 64 bit, the
table of possible primes for p contains only 6 entries, listed
in Figure 1.

Next, the largest u is selected that permits the polynomial
to hold the whole 2N bits of the result. It follows from (3)
that log p ≥ log(Mm) + 2u− 1. Since log p is already fixed,
maximize u. The larger u is, the less coefficients are needed.

After finding an u that fits, minimize the product Mm,
because the smaller Mm is, the smaller the FFT length and
memory requirements are.

Lastly, set M and m. Factors can be moved around be-
tween M and m, since until now only the product Mm was
needed. To prove the time-bound for DKSSA it is only re-
quired that M = O(N/ log2 N) and m = O(logN), cf. [7,
§4.2]. This means that their quotient M/m ≈ k ·N/ log3 N
can contain some arbitrary constant k.

Some short tests on selecting k indicated that k = 1 is
overall a good choice, but more research should confirm this.
This selection leads to the same values that DKSS use and
that were already described in §2.1, Step 1.

This parameter selection was implemented in BIGNUM as
dkss_set_mmu().

3.2 Test Environment
The implementation was done with my own BIGNUM library

[15] that is written in C++ with a few inner subroutines in
assembly language. BIGNUM allows different multiplication
algorithms and selects the fastest one, depending on the size

Prime p Bit-length of p

27 · 259 + 1 64
81 · 2121 + 1 128
13 · 2188 + 1 192
207 · 2248 + 1 256
13 · 2316 + 1 320
285 · 2375 + 1 384

Figure 1: Primes p used by BIGNUM

Algorithm BIGNUM MPIR
Karatsuba ≥ 28 ≥ 14
Toom-Cook 3-way ≥ 152 ≥ 98
Toom-Cook 4-way — ≥ 154
Toom-Cook 8.5-way — ≥ 270
Schönhage-Strassen > 2464 ≥ 2880

Figure 2: Crossover points in 64-bit words for BIGNUM

and MPIR

of the operands. An extensive explanation of the algorithms
and their implementation can be found in [16, ch. 2].
Implementations of SSA and DKSSA are called SMUL and

DKSS_MUL, respectively. The source code is available under
LGPL.
In BIGNUM, I chose to implement everything from scratch,

that is, I did not use any other large integer library or special
hardware, so I would not be limited by someone else’s design
decisions. This implies that BIGNUM did not benefit from the
large codebase that e.g. GMP [12] or MPIR [11] already offer.
Since DKSSA is compared to SSA, some work on BIGNUM

went into fine-tuning SSA to make it faster, like “Mersenne
transforms” and extensive “tuning” (to use the same names
as in [10]). Missing is Bailey’s 4-step transform (cf. [10,
§2.2.3]), which explains most of why BIGNUM is slower than
MPIR (see below).
To the best of my knowledge, GMP is the leading and

fastest open-source large integer library. Its port for the
Windows operating system is MPIR. Comparing SSA mul-
tiplication speed for BIGNUM and MPIR 2.6.0, BIGNUM is on
average slower by a factor of about 1.30. As we will see, this
factor is negligible when compared to the factor of slowness
that DKSS_MUL vs. SMUL exhibits.
Tests were run on an Intel Core i7-3770 processor (Ivy

Bridge microarchitecture) with 3.40 GHz clock rate and
32 GB memory. This CPU has level 1 caches per core of
both 32 KB for data and 32 KB for instructions, unified
level 2 caches of 256 KB per core and a unified level 3 cache
of 8 MB for all cores.
The operating system was Windows 7 64-bit and the com-

piler was Visual Studio 2012 (C++ compiler v17). To im-
prove cache performance, the process affinity was fixed to
one processor. The same testing conditions were used both
for BIGNUM and MPIR.
Correctness of the code was verified with Lucas-Lehmer

tests of hundreds of Mersenne numbers (both prime and
composite), including all Mersenne primes up to 21398269−1.
To measure speed, two operands of the same bit-length

were multiplied. Both were properly aligned, filled with ran-
dom words (generated with the C++ mt19937_64 Mersenne
Twister) and the average run-time of several tests was used.
Timings were taken by use of Windows’ QueryThreadCy-

cleTime() function that counts only CPU cycles spent by
the thread in question. It queries the CPU’s Time Stamp
Counter and has clock-cycle resolution, i.e. 3.4 GHz, which
is very accurate.
The benchmarks were done with input lengths of 237 to

169,869,312 words. The largest input number requires al-
ready temporary memory of about 26 GB. Because of mem-
ory limitations, I could not test larger inputs.
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3.3 Improvements
The implementation was improved over the simplified al-

gorithm described in §2 in two respects:
In §2.2, Step 2 every coefficient is multiplied by some

power of ρ. To calculate ρi, i ∈ [0 : 2M − 1], set r = ⌊i/µ⌋
and s = i mod µ. Since ρµ = α, it holds that ρi = ρµr+s =
ρµrρs = αrρs. Because multiplications by powers of α can
be done as cyclic shifts, we can save almost half of the bad
multiplications by precomputing ρs, for s ∈ [0 : µ−1]. Doing
so costs negligible memory (cf. §3.5) and saves almost half
of execution time.

The FFT from §2.2 requires temporary memory of the size
of a full input vector to store the āv(x). By using an in-place
matrix transposition the āv,ℓ can be reordered in such a way
that the FFTs can be done in-place as well. This saves about
one third of temporary memory. The FFT then works like
Bailey’s “six step” FFT algorithm [1], but with faster inner
DFTs. Cache efficiency of the matrix transposition is not a
concern here, since profiling showed that about 85 % of total
run-time is spent with bad multiplications, cf. [16, sec. 4.7].

3.4 Execution Time
Figure 3 shows a double-logarithmic plot of the execution

time of DKSS_MUL in comparison to SMUL. The stair-like graph
of DKSS_MUL execution time stems from the fact that execu-
tion time almost totally depends on the FFT length 2M and
the size of elements of R. Since both M and m are powers
of 2, many different input lengths lead to the same set of
parameters and hence to the same FFT length.

In contrast, the SMUL execution time graph is much
smoother. The reason for this is that SSA uses the ring
Z/(2K + 1)Z, where K does not have to be a power of 2,
thus allowing a finer granularity.

The DKSS_MUL graph shows that execution time is almost
the same for the beginning and the end of each step. The
only part that depends directly on N is the encoding of the
input numbers and decoding into the resulting product. The
time needed to do the FFT clearly dominates overall execu-
tion time.

To compare run-times and memory consumption numer-
ically, we pick the rightmost point for each step of the
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Figure 4: Quotient of DKSS_MUL and SMUL run-times
vs. input length

DKSS_MUL graph, because only then are all outer coefficients
filled with bits from the input and not zero-padded.
As can be seen clearly, DKSS_MUL is much slower over the

whole range of tested input lengths. From this graph it is
hard to see if DKSS_MUL is gaining on SMUL. Figure 4 shows
the quotient of run-times that is between 27 to 36 times
slower at best. The location of a crossover point is discussed
in §4.
In §2.1, Step 6 it is mentioned that DKSSA might be called

recursively. In the tests, it never came to that. Even with
maximal long inputs, the inner multiplications were just 195
words long and are thus still in the range for Toom 3-way
multiplication. In fact, for recursion into DKSS_MUL to hap-
pen, DKSS_MUL would have to be faster than SMUL on the top
level first.

3.5 Memory Requirements
DKSS_MUL memory requirements are dominated by two

times the size of the polynomials: input a(x) and b(x) ∈
R[x]. The result c(x) requires no further memory, since stor-
age of one of the input polynomials can be reused.
Each polynomial has 2M coefficients and with (7) we es-

timate its memory requirement as 2Mm⌈log p⌉ ≈ 10N bits.
To be exact, more memory, namely another m ·

⌈log p⌉ ≈ 5 log2 N bits of temporary memory, is allocated in
dkss_fft(), but that is of no big consequence compared to
10N bits for each polynomial. The same applies to the M/m
precomputed powers of ρ, each with a length ofm⌈log p⌉ bits.
Together, they only need M⌈log p⌉ bits, that is, a 2m-th part
of the memory of one polynomial.
If we assume fully utilized outer coefficients and both input

numbers have N bits, total memory needed by DKSS_MUL is

MDKSS_MUL(N) ≈ 20N bits.

The above memory requirements are a direct consequence
of the algorithm, since they stem from the memory needed
to store the encoded input numbers.

Compare this to the memory requirements of SMUL. Ac-
cording to [16, eq. (2.32)], the approximate amount of tem-
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porary memory for SMUL is

MSMUL(N) ≈ 8N bits.

Again, this is the memory needed to hold the encoded
polynomials.

Measured memory consumption fitted theory nicely with
an average MDKSS_MUL ≈ 18.88 and MSMUL ≈ 8.26. The average
quotient was MDKSS_MUL/MSMUL ≈ 2.30, which fits the theoret-
ical 20/8 = 2.5 well.

4. EXTRAPOLATION
Now that we have seen that in the ranges our tests have

covered DKSS_MUL is still much slower than SMUL, we estimate
the input length where DKSS_MUL starts to outperform SMUL.

To do that, we model the run-times for the algorithms, i.e.
express them with explicit constants, then try to determine
the constants from our measurements.

The formulas for run-times both contain terms that ex-
press the level of recursion: log logN for SSA and log∗ N
for DKSSA, respectively. When it comes to recursion, the
fastest algorithm for that length is used. For example, SSA
calls itself only then for a second time if that would be faster
than Toom-Cook. That leads to a relatively smooth run-
time graph without large jumps.

To model that, we use the smooth function log logN in-
stead of ⌈log logN⌉ for SSA and the super-logarithm slogN
instead of log∗ N for DKSSA, respectively.

4.1 Modeling SMUL Run-Time
Following (1) we model SMUL run-time, that is, rewrite it

with an explicit constant as

Tσ(N) ≤ σ ·N · logN · log logN. (8)

Dividing measured execution cycles by N · logN · log logN
to calculate σ leads to the graph depicted in Figure 5. Inter-
estingly, this graph seems to have two plateau-like sections.

The plateaus correspond quite nicely with the cache sizes
of the test machine, see §3.2. The three boxes indicate max-
imum input sizes that could still be calculated in the respec-
tive cache memory.
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Figure 6: DKSS_MUL run-time constant η

After level 3 there is no further caching, hence when the
required temporary memory is some orders larger there is no
further visible influence on the run-time constant σ. Aver-
aging from input sizes of 32 Mbits (this uses about 32 MB
temporary memory) onwards leads to an average σ ≈ 0.311.

4.2 Modeling DKSS_MUL Run-Time
Likewise, we use the measured run-times to model the run-

time of DKSS_MUL. We write (2) with explicit constants and
the smooth super-logarithm and get:

Tη(N) ≤ η ·N · logN · 2δ·slogN . (9)

Substitute K := 2δ and we get

Tη(N) ≤ η ·N · logN ·KslogN .

The question is now: what is the value of K? The latest
result on integer multiplication from 2014 by Harvey, van
der Hoeven and Lecerf [13] suggests that DKSSA implies
K = 16.
Unfortunately, with the few data points we have, any

model of run-time is not very robust. As explained in §3.4,
we get only one data point per step of the input bit-length
N and since there is approximately one step per power of 2,
we have only 20 measured run-time values to base our model
on.
Figure 6 shows a graph of the constant η for each data

point. The two boxes shown mark inputs that fit in level 2
and 3 caches, respectively. Like in Figure 5, we use only
values of η where DKSS_MUL temporary memory has surely
exceeded the level 3 cache size, that is, where is exceeds 12.8
Mbits (again, using 32 MB temporary memory).
To calculate the super-logarithm numerically, I used the

linear approximation approach [17]. For K = 16 this leads
to η ≈ 0.00034. As we will see now, it leads to a crossover
point that is extremely large.



4.3 When Will DKSS_MUL Trump SMUL?
Based on (8) and (9) we can solve

Tη(N) ≤ Tσ(N)

η ·N · logN ·KslogN ≤ σ ·N · logN · log logN

KslogN ≤ (σ/η) · log logN
logK · slogN ≤ log(σ/η) + log log logN.

For large N substitute ν := log logN and get

logK · (slog ν + 2) ≤ log(σ/η) + log ν. (10)

Solving (10) numerically yields the enormous solution of ν ≥
15934 and hence N ≥ 1010

4796
! An optimistic estimation of

the number of bits for computer memory available in this
universe is 10100. So the estimations of the crossover point
are orders of orders of magnitude higher than the largest
machine we can build.

It should be mentioned here that SMUL is better optimized
than DKSS_MUL. The reason for that is that SSA is now stud-
ied and in wide use for many years and its details are well
understood. In contrast, DKSSA is still quite young and to
my knowledge this is the first implementation of it. Still, in
my appraisal none of the possible improvements to DKSS_MUL
of §5.1 have the potential to speed it up so much that it be-
comes faster than SMUL.

Even if DKSS_MUL was only 1.5 times slower than SMUL, the

crossover point would still be at least at N ≈ 1010
99

bits and
thus unreachable.

5. CONCLUSION
De, Kurur, Saha and Saptharishi describe a new proce-

dure to multiply large integers efficiently that was imple-
mented as DKSS_MUL. The currently widely used algorithm
by Schönhage and Strassen was implemented as SMUL. Both
algorithms were compared for their run-time and memory
consumption.

The results indicate that Schönhage and Strassen’s algo-
rithm is still the better choice for a variety of reasons:

1. SMUL is faster than DKSS_MUL.

Benchmarks show that SMUL is at least between 27 to
36 times faster than DKSS_MUL, see Figure 3. The es-
timated input length where DKSS_MUL could become

faster than SMUL is N ≥ 1010
4796

bits (which is larger
than googolplex). But even if SMUL was only 1.5 times
faster than DKSS_MUL, the crossover point would be so
large that it could never be reached.

2. SMUL requires less memory than DKSS_MUL.

If both input numbers are N bits long, DKSS_MUL re-
quires about 20N bits of temporary memory, while
SMUL requires only about 8N bits. In practice, the
quotient is about 2.30.

3. SMUL is simpler to implement than DKSS_MUL.

A simple implementation of SMUL needs about 550 lines
of C++ code, where DKSS_MUL requires about 1000 lines
plus more supporting routines, see [16, sec. 4.6] with
more complex program code that is harder to test.

5.1 Future Work
Some possible improvements to DKSS_MUL are listed below.

For more on profiling DKSS_MUL, see [16, sec. 4.7].

• Find optimum values of parameters M , m, u and p for
any given N .

Figure 3 shows some areas where longer input numbers
lead to shorter execution times. Furthermore, profiling
showed developments in percentages of run-times that
suggest that a better choice of parameters is possible.

• Add support for “sparse integers” in the underlying
multiplication.

DKSSA reduces multiplication of large integers to mul-
tiplications in R, a polynomial ring. To multiply two
elements of R, each is converted to one huge integer.
About half of the words of it are zero and a future mul-
tiplication routine could exploit that. Profiling showed
that up to 85 % of execution time is spent with mul-
tiplication of elements of R and a rising percentage of
that is used by the underlying integer multiplication.
I optimistically estimate the potential for speed up to
be almost a factor of 2.

Any other means of improving the speed of bad mul-
tiplications would be very beneficial, like speeding up
Kronecker-Schönhage substitution.

• Exploit the structure of prime numbers p.

The modulus of P is a prime number of the form h ·
2M + 1, where h is a small positive odd integer and
M is a power of 2. Maybe modular reductions can be
sped up by the technique listed in [5, p. 457]. This
has the potential to save a great part of the cost of
modular reductions, which showed to cost about 22 %
of run-time in profiling.

If the potential savings listed above could be achieved,
this would speed up DKSS_MUL by a factor of about 2.5. Not
included in this factor is a better parameter selection. But
even if that and other, yet unthought-of, improvements lead
to another speed-up by a factor of 2, DKSS_MUL would still
be at least about 5.4 times slower than SMUL.

Source Code
The full source code of of the implementation is available for
evaluation as the BIGNUM library [15]. It is licensed under
LGPL. Requirements are listed in §3.2.
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